Domain Representable Spaces Defined by Strictly Positive Induction

نویسنده

  • Petter Kristian Køber
چکیده

Recursive domain equations have natural solutions. In particular there are domains defined by strictly positive induction. The class of countably based domains gives a computability theory for possibly non-countably based topological spaces. A qcb0 space is a topological space characterized by its strong representability over domains. In this paper, we study strictly positive inductive definitions for qcb0 spaces by means of domain representations, i.e. we show that there exists a canonical fixed point of every strictly positive operation on qcb0 spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

Domain-Representability of Certain Complete Spaces

In this paper we show that three major classes of topological spaces are domain-representable, i.e., homeomorphic to the space of maximal elements of some domain (=continuous dcpo) with the relative Scott topology. The three classes are: T3 subcompact spaces, strongly α-favorable spaces with a Gδ-diagonal or with a base of countable order, and complete quasi-developable T3-spaces. It follows th...

متن کامل

Linearly Ordered Topological Spaces and Weak Domain Representability

It is well known that domain representable spaces, that is topological spaces which are homeomorphic to the space of maximal elements of some domain, must be Baire. In this paper it is shown that every linearly ordered topological space (LOTS) is homeomorphic to an open dense subset of a weak domain representable space. This means that weak domain representable spaces need not be Baire. MR Clas...

متن کامل

Domain-Representable Spaces

In this paper, we study domain-representable spaces, i.e., spaces that can be represented as the space of maximal elements of some continuous directed-complete partial order (= domain) with the Scott topology. We show that the Michael and Sorgenfrey lines are of this type, as is any subspace of any space of ordinals. We show that any completely regular space is a closed subset of some domainrep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010